MACD零轴不一致,求怎么解释?
**dWHXWfzYcSCrtOKw5vLMK3YBtpvxG7L8ORVJX2DpZo/lpm0bE3hPMXQFfbKp3vjLFT1VIJ+UKKvsuVVk76w70jTYxtrkR4tl7SnP+ysh73BwpsDsrviW/V6xxecod5J2gEmwOznKbYcmEmVeB/fOB0yt+B8EvIN1t//7rZ48XJ6FCIjl3z4YT8tnWt6guPsE7ETH94Fxl7eTHrFrGfGjBEUdY3g5Eqce7EJ8KoSO/9i6yDTP0NDXYjVNYXZD+I1YJI7Tle8w6uedhkcrAZr29yTVmeuxMgWbxPeVII3j9OyB6SenbG71TD/efpkwPv4xvGR/YDMFh31kWTvRmnYntMvvuAMXB4MCbZGsvNM3iEw8gnu1m0dksTZF1DfEeBrJZEMX7lyZXT0irZth2ofBe2qxH56EqJKwFIE7apEJ2Ls1a5dldhCw6tKbB1hSwCtVuw+1V3miA47x6HbstNGUHvkFAJN+Z1ewWqwSs09aYU8wTGHdHOdqsRe25pUic3EtKqkaV+f6ZkzCOp7dlpCw9nOMyy+4Kz2zQC6Xy3B4AgE/fzJCbD2rWhOOHXuW6uPIzvD1BIVcHZ1DfjiC1+do8CrSrxPcOzsQ/1hR32PWfsTHKhtkGtXJXYqpP4IqZ7ssP2i0zf2fZnmq9OO0SkeR5XYhBltpXug80GmwhZuTYPMfiY1Jlg8H0Lmm7Q6VYm9QUOLDmfTl/cJjv10qUmVmOltKlXSuW/NvhcDdvqpfY9FV24hNL7gDAAuDdDg9QTrvCq5rbNhPo5oM56XrC484L6ddeGmf6pRYzXh9IyQ6jy7Ie+99IH640zdDrcLgAtTV9tp5vZTt+zrz9St7QZ3Yc4AuKxOOyZXKJnDOgGqr3DqTDZUJysu7K44Z9h3Z3uk7jWAS50qqa5ydrvpfpjntbpnWxf2ybrsTOPwGh8pABeeiJtv0qrWP9/d6Qr3dTtrntMNubvdDRfCn0/rFwLTnM2NtuTcms1KpUp8o8Rxjb36GHqcYeRmmg3ZshkyYFYi71UDYbKOGj/Yi1x0iEuGI2EEBkJdSQnAhaiSHhBdldTe1oswAg2/BKC7CUJkjqlBS8JCAC5kxhCYF0SVCPSH+AwIGjOIKhHoD8GmFDVKbK6Gg5AXBbQk4csfd/K48qeoUQLh7DxRuLG1gZAXBQgB1vxxJ48pf5IrYQB8yZNcSXTgyb+Ru0fIiwmiSqIDT/6N3D1CXjQw+9yY8m8E5LHl38jdI+RFA1Ela4Dl+LcaBr4LIWZXAxRcq8fmA+C7EGyH1Dex9wL/xRCzC8LXQ89AVm/wT4GgqFHCja0NhLzlgRBgzb8RkLcEf9dQSM2B278DQnDvAezLhZgkfhw+Aw+fAEJQdgsOn6lvkl0IV28CQvD4GeRcgIJrRJUwAKbkiSpZA8zI32seFFwDhODgKQhcDu1HC2r1j7EQshpikiB4hW3P8X2HR0jDN0nDN0nnbZZuPBgsL5IVlZNvBmAATMnTXwvAl38jIG8u/jO/o24oqDdvqAN5VP8pOu0HDJsdMn/zjGU7GSzZdDDlbOnxqvuphWXLtmSxL81YtpPkShgAR/JMooQp/8ZB3sT8m/aFkNVw7wG8eg3bsrQnRy1sBvuErpOln6L/16Qs/ZQqJ6rDYL+lrdtp6uHdCA8hb2EQVbISmIa/2zSISoDaP+DxM4hJglaeWoxtW3kGR27LKL2bVFTuP2tD9z6T9L/juxEeQt7CIKpkJTCQf8tB4DUP1qSodo5evYb8EpgZCy0HaWrSwmawk3vYjFV7MstrNudcHjhmkRG0343wEPIWBlElK4Fu/l7zILuw/v19fgmU3VK9ETt8BsLjwEljsmPvMGaw39IZq/ZszrksVyiTisoXxGc5uYcZS1vkbTOs9/wIeQ1g9rkx5d9oyGvn/3HY9+//cgfevm154MePNu1nYBe1035omJY+xwTHxOw+kV5yS65Qbsu7GvH9vjHBMb36fGMqziRXwgBYkK//veKGiRIu/LEefP34u02DhT/AvQfw7DnE7gX7EQK7atLEdbDf0oSzZZnlNTNW7XFyD2thM9g8tN+N8BDy5gbn19UZhcKFP9aDL4h/eJxqk+jtWyi4BuFxYDtUYCfd+0zyn7Uhqah87yWFNHyTjZ2HmWm/G+ERk7zEBxACiQ+3jgV5weBVJRpY8Md68HXwl/jAhTJ4/AyWbAPXUCGtmn844MsBM4MifqBf7WeW18Sk5g0PXNH8wwEWoQ2uAkFRo4UbWxssQV7iCwiBxFdo3arImwIa0iVs+GM9+Jrw8dwN8Ow55BVDq+HaLVu383YbGTltxe6NR3+SK5QpF28uiD80YsKqTj0nWJz2uxEeK1UlYSKFy8jzShJG/LEefB5IfCG7EF69hvANWsy+HDBzQfyhpKIKuUK5NfdK2Jq0wX5L7R18RCX/LoTHfOT1VSKiSrgBS/JfTISDpwEhyCu2HzRDk5nbyMiNR386VFkbtibNxWOujd0w8ZnToKjRAuHs/I1wY2uDmci3cQ0FhNq4hhpQVz/EfeTVtpMw44/14KswbjGVf5l684Y6cZ4aMY+X/yCveVMWbk0tLMu89mt4zO4ejuPFp90QJFfSE1qSHSNzJc15Ey4jr54l4cWfF9iQ9/0WLlUAQpCaA92+5vC3sRvmP2vD2owzcoXyUGWtLP3UiAmrWtgMFp82PxpfeMxKnqiSVqhLEl78sRz8kNVQdQ/evoUEufr86flFcOiyXZnlNQlny3xCv+vSe6L4hHWjMYVHCHmBb8SMlBWiSnjyx2nwmw+AmbFQ+whevIQN+8F+JPuqjd0wF4+5YWvSDlXWxh0533f4fPEJC4ejYxAN3sudO/szBh4es+mKnZ2HuqWdnQdjyaBzZ3/ebtUtHR2DPvhgoLpl+/be6pbt23urW37wwUDebumrHFWSDJrp6BjU1XMuINTVcy5t+VGvCeoaYWfnwTaj65JBM9m9sZuwzeh6864B6t3Sfqn3rK5QH3wwkBl5db+0xIuBJeOFEKhbOjtP0jde2v3q4h3ZfuWuD2L3QvBKaDgZTO4XPXNMNQ/1iJfEF4JXMj/k+EHs3lbpuS2vVDJo9vhZkz//L0QlgO1Qujd7B5/BfkvD1qQlnimTK5S7z1es3HV8UlicBdaXaech5OeX0ODddkpJOcYYnD9fSlcCA5erWwYGLmcsGaSkHOPtVt0yP7+kX78p6pYrV+5St1y5cpe6Zb9+U3i7pa8ye370BnNcVn5+fsn+C2WA0P4LZbSld/h69W3pwMDlbDO6HpeVz+6N3YRtRtf7jP1WvVvaL/We1TfF+/Wbwoy8ul9a4sVA9Hht3LhP33ip+7XtSuXsW78N/OPJR2/+Bwh1/c9/21+pbHr3PiDU9Pc/WmTlt/ZbZIBfRwuurS27Nan6/sxff9tZ8ou6X/TMMdU8VPdr07Wb027/Pqn6PgPJ+dKmyseAULPbv7dMP/nRpoyPNmX0PJTPGCy482DNr/c33fxtX/61acsSpy1LXJF0PLW4qu5/pe3PvVh+6uxVzrI16/oy7Tx8N57gzPQ4ZkAT094RExg+c2yHQkQ8FFyDt28BISi4BjFJ4BEOzQfU29iPBP+lkJoDCMGFMhi9QHe37b0hMAq2HYKKO4AQ1D6C7EK4UAYIwavXkFcMUQngPstY8lrQajhEJTS4I+cnrgOjWveeOHDMt+yfSQuO3EZvV2eU3l2WeJzzI2p9h8/nfbWP57IVbIqne64AjVeVMFEoQ2aO/UiI3QsvXsK9B7BkO7hN192kvTdsOwSvXsPt3xv8aQ028orh3oOP//f/3Kp+k+aVSBOPSpfvkoZvmrR4pyz9lCz9lOzYT7LCn2U3qmX3Hsl+fyKrqFl3vlx24Ax9NSLugEfAcqO+YciQrLoHEfHgFMK+6tDZf3jgioi4A/R3GjfnXJ6xag9benxCv9P3m9Z4LlvoKxAU5S3cWHxI/AAhkPgJrVumifnuaMXQb+a0HwN7TwBCcKcWgmN0+mjbyqvv8PnS8HgVFu0IzjwnKyrnRfS5GwmXqugvMc9Ytae+FS9ke6V788ZX1kgfPpWevCRdvitsTfrW3CtyhTKpqCI6+YQs/TSNmNQ8/1kbu/eZrNEp+1HgvxRSTwBCzS/e+DJyK+deyxKPp1+9LVcoY7MKgyO3O7nPbmEzxMSDL3CCGQDTz0kzzS3RQVTJaiB05nST0usWShXah8Khc4BHQNSc2P07Tl+XK5Q7Tl+fE7tfh8TUwW3kQttWXvqR94qAguuAEBw8DYHRNj3Gu3jM5XQbk5p3qLJWrlDK0k8vSzwuSz8tO1wkO31NduWW7NZ92e9PZLfuR1+u2phfKlco915SLNpyhNPDlwNmNXt/gBkH34AJpgnmnpPLEo/XpYUmmltWAqJKVgPdM0fiB6cuA0JQeB3cwzT52Hf6ekAovrxGrlAuyy0BhL6aKNNLYowi7zoVUk/U/RUzJezLg5nfQ88gtnGXoJU+e/OkF8qlv/1b+vi59Odq6bGL0q1HpIt30tIzYsIqh84Blht8M00wA6axXgiK2CJLP03/WEF08gn/WRs/d5lq4NwSF5aXGAOaGNm8mxQOnwWE4FIFFFyHCzcAIfBfKv7ga4WOmRMcA8+eq76XrMF993mbk4oq4strAKFufkuavT/AYorMQ95+FPh+Cxv2qzg/ew7ZhZBfUrclfx1iksFjDjQfKPrIW9Eq0AsU5U1jkFfElIXb1u3NPVxWfbzqfvzhwvCY3SPGLe3cNYA2cHaexBhbIVhv07mHQuqWaWJ481AZdeIC9eZNmwulgFCbRDkVl94mORsQavO//1F//dWm+GdAqM3MWNEDoQ6NM6eHlMo6TT1/QUUnqLvc3m364FELJm/JAoR+uP5ryPwfHAbO0DSSIpCn0cGHGreYikunYvdSvotEH2osVoFOAOSXQGA0R6s6dgscMWEV8/sGm3MuT1uxu3NXC2aeRn4sWNWnhDHNu0lh8XZACBCCfXnQM4jfzG0GxKYBQvCf/wJCcOEGxKbB6Eiw9RA/LppypcBouKeEslvQTcr25eNPR42L3QcIJVY/yii9O/fgWUDovY6m2A0xIXmrBRarQDe2HYIXL+GeEqaug6b91S1atxszcMzi2KzCLSdLzP0M3/jjwdv8s7HgHgbxBwAhiD8AMcmq+tP/AEJQeRcQgv7Thd6xZxDM/B725UHtI0AIKu5Agpyz/WFhNFjYTftDiAzuKVUC+tlYtl8hO7PlCuWSE5cAIWrIHAMDYT7y1gnRJcb0qgR9wdYDlmyHh0/g4RNYswfcw9Ttmn84aH1WwdbcK63bjRE/DDpjY7XxYOr0q+Jd2ao86PEz1XYvW5WmfQe2Hvre0aFzwMDweEBo9Ipk6fJd0sRjc0qqZL8/kZVVy47+xLzMpiENj9e0jWhCqBZ284EQvgFqH8HjZxCVCI70/+/xoz/2ZqWdAoRmZ+R37zPZ2ECYg7xZp6sBE0xIV9a/CjSOD1NrPhCmroO8YnjxUvUUEJUI9qMYA0lHv+jkEwlnb7T7bJxZ4mTC0FptPJxCACFVFnNPqdq6HjLbyDt27zPZa2kC1L2fWnT0J5UqMS+eV6ZI869JHz+XVtZIr95iEH3uRmbFb3KFcm3GWfYXcNhYtOWIkW+O2vWQQlRi94d/jq35Q7r/tHT+Vml4/OgVyYBQbImC/vZQ0OZDJsg69VIlYeuEqJLZVUndL97dpk8959hFJfztehW8et0yPZfeo3J2nuTgMGZFUk5qcdVXfaeKvrFnDZt2ejVp4xratEYJCNlGJbR1DjHmjpLBYcP8lgRtPAAIJVY/yiyvWSg/Dwi5Tl6jZWexrXPIR+vT6f9XRaP5uavw6nWXv94E3LgTdEURVHqbRvC50pC0vCnr0qctS5wtS918rFiuUO67dmdN+qn1WQXrswpiT15ed7583U+VDNaW3llTUaOOFRU1snuP5AplZmXtwn+dB4TGr98/bVni+PX7AaEhczZ1/Xy8AUMhMBCGTR42zPSSx+pep1jTOx9wdJygDVPXOV6pdETIMbd46LA5jo4TevUKXp926mDxTZd+03W0NT+6es4DhLp6zuPUtVwSrcmUtY4P/t31p5+NueMQr/nz9/0ICO2vffqv0uqo7POAkPu0WOEk+RG0wjH+gOOOI/U4cs7xt4eOCDk++Ldj4XXHK5VfXb0pvXF74c/VC3+5t/DPFwufvVz4y72Fp64IweJ/FY0at9S0g2+Z2Dk6TvDwCDf3dMVuWMxNEs6kHEEAZ1KO5ORc1FTPuXDjTHU159Ldy9dPnNDYpEFzzZeMbCIc+fkletmbGEWlOa/f5NQ+Mqx5fn7JucLSm/ceKl+8Uvz2R/GVm6fyrxjWlX6ByL+SU6o4c+4nBHDm3E85ihpVXf6j8NjxDj5CIGY4jB4uvUdSPBdEnvkGASTQBwFIoA9AP011gH6SlCOcS+n7T8yJ3S+0uQAzA5oIB0WN0cvelHCfDc+eQ8K/DGjr0Pnr4YEx67MK5AplRNxBh85fG0nGhIEwZvCR6sfhRIqIQeTNOj8twB8nCJ2agd9yLrk4jMgovTv168VElTSiqZvqa0RRicJbNWnS3yMgOjr5ZEbpXblCGXfk/GxZaut2PmalKjAQhoEz+Kj+t70tHhEjyBNVshyEasQnQxCApJM3+9KXA8JO5F8mqsSPboFw9SbUPgK3GQKbNP/QffSktUlFFelXb4cuS+rVd0az9weKQ54F86kSFsKkrypZG7BUJdc2HgjAtY0HRY3RVK8/XBjHubRk1hoEMKCDl6DmWu9iQBPhcHYO0cveWET+QD37DyU/R/UIFNgkZP6WgyVV+4srQ+Zv6fSPcWKSNzU4/FGDv84kPj29yDMwfk6Ky9+aIThXog8P53IudWrmggAipskENbfsdoY4nxitvCC7EF68hKnfCWzy8aejZemn915SDA+MadKkv5jkzQM2f8TzlyzFZyiQPI7Akz/rQLdGVFdDKy91sxP5l9t95k9UCTzmwsMncKkC/hEgsEnf4QvSr96OTj5pY+cpMnmzgagS4a8nNFzg14iLVyBEpq4XshU7Y1J/fKdVqfkg2JwJCEFMMjR1E9KkdTufBfGHMstrRkxYLTJ5M0O7Klm5MDWmwccHGi7wa8TqnXD4rLpeONoNyii96z94+juqSj0nQMUduKcE16lC7B06fx0Rd1CuUEYnn2z3mb/I5M0PokqEv37Qa9vsk8Co9/771z/bearv802YuznrSL4Fdrutbc/PdmUSvHrdIiu/XZcAnca9+oTE7D4pVyhjdp90GzZPdPKWAcOfV5KsfNu70Qw+RgCA/gJBUT7QdAC8eCkZNAUBSMAJoL8EnOh6kyZuKSlH1c/TbdmHQuraLxkAivIxuK1G2HpC/hV49hz8lwuxH+y3PKP0bnTyyY7dgsQnb0Ew/NVSJPG5vTuDjxX0de9gvmT1Tl69cO/ujwBGOk+Ed0GVbD2h7BZcqgD70TqNW9h4LNoizyi9OzwwxirIWxa8/IkqEf6aoa97waskl69rkZUDh07Z2A03rSpZXWzsR0NVDRRch5ZDdRp/7jIt5eLNuCPn230WYBXkLQ6iSoS/ntDXPVtPSXW1FllJTDi8ZPvRxqxKknFwuxbyLkFzd+2WTZq4BUfukCuUQRFbmzRxswryYoCoEuGvJ/R3T5KWrUVWnNp6ZZbXTPSe3zhVqdt4uKeEw+eg6QDtlu0+C4g7cj6pqOJzl2nWQl4kEFUi/PWE/u5JvOciAEkTZ9AgK8MDY46evNgIVemLSfDwCez7UackeQREZ5TeXbRF3sLGw1rIiweiSoS/fqAoH4Fwdg6hK64OIxCAa0AkRfm4thmGAFzbDOPUd8anI4C+bT1VTTSYaaqrHxoJhrzhGB1JPX5KpeZoN+vaY/ya3ScOl1VLp8eahLlpyIsKXv4I6TH3rI08RsCRv0G5Ep3FpGWD5mSnx0cDEUDouEUNmuCbK3nMhRcvITZdu1mvvjNSLt6MzSq0dxhrwo8OY8mLDV7+JFci/DVDf/dUelFdDe19tUuMPKfIttUI3kvYqJL7bIjZDa9ew5KdWsyavT8odFmSXKGUhm82ZmPbxOStA5r4YyFMjXXwrRv6u6fSi+zTsGSndonZuSMrIi6T95JVq1LTAbBwq+rvZb96DflXIHCFFvuO3YI255QknL3RpfckcwQJz4mlmz9RJcJfA/R3T6UXE5bCPaV2iXHr5HOosrZ7n1ADVEm02Pzja7hUAQ+fQMRmcArVae8TGptZXjMndn/zDwebKUh4Tizd/IkqEf78oChfgXB2nkxXXNt4IgCXzj7w6vVXo+YgANc2nsx5Tj3i+4xtedf6tuW5pKVucjDkteP/zP/hvf/+9eGJi+16BOk0/ufA2euzCvdduzNqfIw5OOtL3mqhiT9Cekw/ayOPC3DkDwBuAkFRvnRFAs4IQALOkHpSsjlNVWefZ9Vb2AxLuXgzdNy32s04dZODIa8R3YIguwhevISQtTp7695nyrLEHLlCuSD+sG2rkeYgrB9564Ym/gjpMf2sjTwuwJO//u7Vy4d7uOTWrzolZrBflDynyHpVyXU6ZBcBQpBdBBJ/7f107DZBln5arlDOic2wdxhnmSDhObF08yeqRPhrgP7uNZCSostCJGbj96kIoFMzVy1mllalnhNhZhwUXAeE4GA+9Jyos5Ox0+MOVdZGxGV+/Km3JYOE58TSzZ+oEuGvAfq710BKZq0RIjFdmvdFALGyZC1mFlIl93DIuwQvXgJCUPYrbDuiMz8CcPv4U2/6p7Wd3OdYPkh4Tizd/IkqEf4aoL97DaTE3hMBSLr4cc83lBj68Ej22eDIHWKqktcCePUaErLBYx609BDSsNn77qMnrUu/entZYo6NnZcoQcJzYunmT1SJ8NcA/d3jkZKV2/nPN1Ql9+7+meU1gcPDxVEl/+Xw9i3MjBPYpIXNsLHT4/ZeUiQVVQwcs1TEIOE5sXTzJ6pE+PPDgFeMPK/zr5VRHfy0vOZnDn2DV53KL7bMtwHY+HzFLur5Cyp8gxDjrj2CwqKTM6/9mlp4Qzr9ewcHkV+U4vhyVwh/8s0Awp8XJsqVysrBd4nOXIk+nBUchQCc2o5QNzMXIn6AV6/Bd4lOy48/9Z62Yk9mec3W3KuD/aLE/9BoOPKYQhN/kisR/hqgv3v8T3DZRQJVia6n7z/ZwmaY2VXJ3hvyr8DjZ60Dlmu3bPfZ13NiM+QKZWxWkYtHhNhR4R95TKGFv/ULUyMefCuGce6pZKWTD7x9K/nEQ7gq7dyRFZP6Y8f3zKlKvkvg8TPIvwKtRmqJTZfeIUu2H6X/DtLnLtPFjofQkccIRJUIfz0BAwSCovzUT9bLzaVfJLPW1kkM6zzHrK7uaDck4eyNJfM2sM1MhpbDIPk4vHoNEVu0kP9yQLgsPV+uUC7ZfrRTz0km5mA68JLHCFr4I6THDLQ28lgAS/4U5ScQzs6h6idd2wxHAK5thtst2dmp6DJdZ5/nmLHrzm6zjuVeZJuZBJ+OWdz07oNmt2s/9YzQRH7U+FVbTpbIFcrFW4581XeGCe9uDvCOPEbQwh8hPWagtZHHAjjyN12uZOsluakQnivR9eFfTUAA8Rv32bYaZRqVjUmBt29h2xFoPoSX/GC/qK25VzPLa6at2PPxp2PE/1gwdOQxghb+JFci/PlgnHsN5GZjqr6qRNe3xO/fe0nh4jHfKE8k/nDpF3j8DLwieXh29B8xQZZUVJF+9XZQxDYbuxFij7sewHNiCeJPVInw54Nx7jWQmB4BCEDSZSzoqUoScPYJXX+osjZszb7mHw41xI3AlfDsOeRcBLWcq4WNp/+s+PSSX1Mu3vQJXW9g/6ICz4nVSPhjTR5b/sa5xyMxmSdBsCqx0bFb8NbcqztOl3bpPVkPB5iN7fBNnDcThGUAAARPSURBVEu2rUZNWpyYUXo34eyNgOlxTZoMFHusDQSeE6uR8MeaPLb8jXOPR27KKiB4tQGqBDCg2fuDZ6zae6iyVhr+gyBW3SZAVQ2U/Qo9v2FO2tiNcPGYH7Zm36HK2o1Hi91GfottbLSNPEbAmj/W5HHlb+RmPs/LtWmrqPt/uHb21fkOTtONRoxbfrBEsSX7wthJa3v3maKRkuNE6u59Kiuf6hTQu8+UsZPWLtpwMPn0teNV99MuVKxMOOrpt1Q7eVyANXnc+WNNHlP+ZsiV6O8urU4wIFdiYGM3ImzNvq25V+UKZVJRxYL4wyMmyDp2C663aT6kY8nNEcWVCzYfSSqqkCuUG48WT1uxx23kt63b8fDkJY8LsCaPO3+syWPL3zj3+OXGaSrrNyo1mwm4aQsbTyf3uUER29ZmnJMrlBmld6OTc6OTczMq78sVyrWZhUER274cEK5zDxvP2DQG8rjzx5o8tvxN514D6VmXhAAkTf7Jc0kfVeLgc5cZ/rPipYcKez140qRzYGOPTWMgjzt/rMljyx8GCgRFjdVuIAEXBCABF4CBkr+7IwDJwk08l1h1QxAeD69eg9tsvVrpJG/NwJo87vyxJo8tf9O5xyM91dW0fJhGlVqNhuzz8OIl+C57N2LTGMjjzh9r8rjyp6ixAuHsPEW7Aevlmqre4/vdTe8+aNclkH3JMHwSuLLJo6d/u65o4zrdgOY6yVszsCaPO3+syWPK38y50t/6Q0U1JOcY9dRm7wMJ2YAQxKS8W58YjYI87vyxJo8tf9O5x/+Y9sVkePVa4jnbEFWSBEByDrx9C5d+AdeZ715sGgN53PljTR5b/qZzT+Pm0ZIESVmFfqr0xWQ4eAYQgoJS8Jj/rsamMZDHnT/W5LHlbzr3tGxpq75UmVsI/tE6buQ+F/IuA0KQfd7I/Aj/2DQG8rjzx5o8tvzN4x5XlejDlTvgxUuoqoGILeA0tUGTnt/AzA1w6RdACFJzodsEEpvGQR53/liTx5W/mTbzOS/d6g8dv6FWpVDny6g3b6jnL6hz16gTF6nHT6k3b6gbt6jtRygns7wywPFNROMgjzt/rMljyt9cuZIguM2GhdshJgW8FkJLT7Oqr+nJWxBYk8edP9bkseXfyN0j5MUH1vyxJo8tfxgkEBQ1VrixtYGQJ/zfQfLY8hefAQEBAQEb4jMgICAgYEN8BgQEBARsiM+AgICAgA3xGRAQEBCwIT4DAgICAhY+IYUUUkixpkJUiRRSSLGuQlSJFFJIsa5CVIkUUkixrkJUiRRSSLGuQlSJFFJIsa5CVIkUUkixrkJUiRRSSBFUOnTo0KtXL2cBpVevXh06dDC4FVElUkghRXfp0KGDk4uLx6hRY4ODdWLoyJFOzs4ODg6GtSKqRAoppOguvXv39vT2puWjrYPDR3XF09e3rYMDoyxMfejIkb169WK3Ghsc3N/D4ytX17HBwdpb/X8KJ1QZE/TF3wAAAABJRU5ErkJggg==为什么 我添加MACD 指标的零轴和 带柱子的零轴不一样啊?不是同一条线,那我该看哪一条呢?
虚线 是我单独添加MACD时自带的零轴,如下图:

再加上柱状图时,又是一条零轴:

两个叠加起来并不重合,那怎么看零轴?以那个为准?
小的菜 求解释! 刚才没弄上图 还有: 我放大缩小图时 ,MACD柱状图的零轴会跟着上下变化 因为你坐标轴的标准不是固定的
比如用了L h 别的指标值做参照
回复 #4 xiexl 的帖子
我晕了 也不知道 好像也没法改啊http://www.freestockcharts.com/#要不你去这个网站试试这个网站可以实时看美股走势
页:
[1]